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The goal of today’s talk 

• To present recent progress on two diagnostics 
on Ensemble Data Assimilation: EFSO and DFS 

• In particular,  

• how we interpret their results 

– including potential pitfalls we have identified 

• and what information we can get from the 
results to improve data assimilation system. 
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Part 1:  
 

EFSO at JMA 



1. Introduction: What is EFSO? 
EFSO: Ensemble Forecast Sensitivity to Observations 
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• Langland and Baker (2004) introduced 
adjoint-based FSO method that enables to 
estimate how much each observation 
improved/degraded forecast without 
performing expensive data-denial 
experiments. 

• Liu and Kalnay (2008) adapted FSO to LETKF. 
• Kalnay et. al (2012) devised improved, 

simpler formulation applicable to any EnKF. 
• Ota et al. (2013) implemented the new EFSO 

into the NCEP’s operational GFS system. 

O-B of ens. mean 

analysis spread in obs. space 

forecast ptbs. Reduction of forecast error 
by the assimilation of obs. 

FSO and EFSO enables us to estimate how much each 
observation improved/degraded forecast 



2. EFSO implementation at JMA 

• DA system: hybrid LETKF/4D-Var coupled with JMA GSM 
– Resolution:  (outer) TL959L100 ; (inner and ensemble) T319L100 

– Window: 6 hours (analysis time +/- 3 hours) 

– B weights: 77% from static, 23% from ensemble 

– Member size: 50 

– Localization scales (e-folding):  

• LETKF:   Horizontal: 400km, Vertical: 0.4 scale heights 

• 4D-Var: Horizontal: 800km, Vertical: 0.8 scale heights 

– Covariance Inflation: Adaptive inflation of Miyoshi (2011) 

– LETKF part initially coded by Dr. T. Miyoshi; maintained and updated by Y. Ota and T. Kadowaki. 

• EFSO: 
– Lead-times investigated: FT=0,6,12,24 

– Localization scales: same as LEKTF 

• advection: “moving localization scheme” of Ota et al.(2013) with scaling factor of  0.5 for horizontal wind. 

– Verification: high-resolution analysis from 4D-Var 

– Error norm: KE, Dry TE and Moist TE 

 

• Period: Jul. 10, 2013, 06UTC – Jul. 15, 2013, 18UTC (5days, 20cases) 
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by Yoichiro Ota (2015) 



• Overall, the results are 
consistent with other 
centers: 
– at FT=24, contributions from 

radiances and conventional 
data are comparable. 

– AMSU-A, Radiosonde SYNOP 
and Aircraft are the top 
contributors to fcst err 
reduction. 

• Contributions from 
hyperspectral sounders 
(AIRS, IASI) are modest 
compared to ECMWF or 
NCEP. 

• 6-hour EFSO is consistent 
with 24-hour EFSO. 
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EFT: 6hrs 

EFT:24hrs 

Aircraft RAOB SYNOP AMSU-A AMVs 

3. Results 
net EFSO  contribution from each observation type  

(target=globe; norm=moist total energy) 
 



• So far, everything seems working well. 

– EFSO estimation consistent with other FSO studies 

– Plausible relative contributions from different 
observation types 

• However,…. 
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4. Underestimation problem: 
Estimated and actual forecast error reduction 

• EFSO successfully 
reproduces temporal 
variation of forecast error 
reductions (correlation 
coefficient as high as ~ 0.8), 
but 

• Only ~ 20 % of the 
amplitude explained by 
EFSO. 
– In contrast to  > 100% 

(overestimation)  for  NCEP’s 
pure EnKF (Ota et al. 2013) 
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 EFSO Δ𝑒2 =
1
2𝐞𝑡|0

𝑓T𝐂𝐞𝑡|0
𝑓 −

1
2 𝐞𝑡|−6

𝑓T 𝐂𝐞𝑡|−6
𝑓  

NCEP, FT=24 (from Ota et al. 2013) 

Δ𝑒2 (black) 

 EFSO 

JMA, FT=24 

 EFSO (blue and red) 

Δ𝑒2 



5. A possible reason for impact underestimation 
(1/3) 

• EFSO implemented for JMA’s LETKF 
underestimates forecast error reduction, 
whereas, for NCEP’s standalone EnKF, EFSO 
overestimates the actual impact. 

• Why? 

• Bug?  Æ  not found. 

• Possible reason: forecast error not well 
covered by the space spanned by the forecast 
perturbations 
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• EFSO formulation: Δ𝑒𝑓−𝑔 ≈  1
𝐾−1

𝐝𝑇𝐑−1 𝜌 ∘ 𝐘𝑎 𝐗𝑓𝑇 𝐂(𝐞𝑡|0
𝑓 +𝐞𝑡|−6

𝑓 )  
 

 

• In evaluating 

𝐗𝑓𝑇𝐂(𝐞𝑡|0
𝑓 +𝐞𝑡|−6

𝑓 ) = 𝐂1/2𝐗𝑓 𝑇[𝐂
1
2(𝐞𝑡|0

𝑓 +𝐞𝑡|−6
𝑓 )] =: 𝐗 𝑓𝑇𝐞  

the portion of 𝐞   that lies in the nullspace of 𝐗 𝑓does not contribute to 𝐗 𝑓𝑇𝐞 . 

 Namely:  
• Let  𝐞  = 𝐞  span + 𝐞  null, 𝐞  span ∈ span 𝐗 𝑓 , 𝐞  null ∈ null 𝐗 𝑓   

then 

𝐗 𝑓𝑇𝐞 = 𝐗 𝑓𝑇 𝐞  span + 𝐞  null = 𝐗 𝑓𝑇𝐞  span 

 

• N.B.:  This issue does not arise in adjoint FSO because, in its formulation 

Δ𝑒𝑓−𝑔 ≈  𝐝𝑇𝐊𝑇𝐌𝑇𝐂(𝐞𝑡|0
𝑓 +𝐞𝑡|−6

𝑓 ) = 𝐝𝑇𝐑−1𝐇𝐏𝑎𝐌𝑇𝐂(𝐞𝑡|0
𝑓 +𝐞𝑡|−6

𝑓 ) 
    the matrix 𝐏𝑎𝐌𝑇 is full rank. 
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5. A possible reason for impact underestimation 
(2/3) 

𝐞  𝐗 𝑓 



• Does this hypothesis really explain the impact 
underestimation? 

Æ  Verify the hypothesis by performing the following 
diagnostics: 

• For each local patch of LETKF,  

– Decompose 𝐞   into 𝐞  span and 𝐞  null.  (detail in the backup slide) 

– Compute  the “explained fraction” 
𝐞  span 2

𝐞  2 . 

– Compare this with the impact underestimation 
 EFSO
Δ𝑒2

. 

– If the two agrees, we conclude that the hypothesis is likely 
correct. 
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5. A possible reason for impact underestimation 
(3/3) 



Diagnosed “explained fraction” 
𝐞  span

2

𝐞  2  

Horizontal distribution 
(near tropopause level) 

• Fcst err well-captured by ensemble over 
the SH ocean, but not over the land. 

Æ Perhaps related to observation density: 
– Data-sparse area: analysis (verification) 

and forecast both close to model’s free-
run Æ 𝐞𝑡|0

𝑓
 similar to Bred Vector Æ 

covered well by 𝐗𝑓 

Vertical Profile 
 (global average) 
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• Errors in moisture difficult to capture by 
the ensemble. 

-+-  Kinetic 
-x-  Dry 
-*-  Moist  

Very good agreement between 

 𝐞  span
2

𝐞  2  and   EFSO
Δ𝑒2

 ! (both ~ 20%) 



6. New open questions 
• Why only 20% of fcst err explained by ensemble in JMA’s system? 

– tentative answers:  
• Not enough members (current 50 members perhaps insufficient) 
• B-weight assigned to ens too small (currently only 23%) 

Æ analysis increment largely aligned in span 𝐁static  
• In fact, we found that for stand-alone EnKF, “explained fraction” 

𝐞  span
2/ 𝐞  2  is ~ 70%. 

• Does this underestimation mean that EFSO is less reliable than 
adjoint-based FSO? 
– No clear answer yet, but perhaps we should not be too pessimistic: 

• Fcst err 𝐞   verified against analysis is different from true fcst err. 
– No difference in ens and adj in this respect. 

• Preliminary “apple-to-apple” comparison of EFSO and adj-FSO at 
JMA shows that they are similar in many aspects except their 
magnitude. 

– The “spanned-space” diagnostics presented here could be used to 
assess credibility of EFSO for each DA system. 
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7. EFSO at JMA: Summary 

• EFSO is successfully implemented on JMA’s global DA system, both 
stand-alone LETKF and LETKF/4D-Var hybrid. 

• Plausible impacts from different report types that are consistent 
with the literature. 

• However, EFSO considerably underestimates the actual forecast 

error reduction Δ𝑒𝑓−𝑔. 

• Diagnostics that decomposes the fcst err to column- and null- 

spaces of the fcst ensemble 𝐗𝑓 suggests that the underestimation is 
caused because significant portion of fcst err lies in the null-space 

of 𝐗𝑓. 

• The diagnostics exposes the lack of the ensemble size (currently 
only 50). 

– Æ further corroborated by DFS diagnostics (Part  2) 
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N.B: This is a system-specific problem.
        May not be applicable to other DAS (e.g. NCEP GFS)!



8. EFSO at JMA: Future directions 
• Better understand the nature of FSO and EFSO through 

– comparison with adjoint-based FSO implemented on JMA’s 4D-Var 
• JMA is perhaps the only center which has both EFSO and adjoint FSO on the same DA system. 

– participation to “FSOI Inter-comparison Project” led by Dr. Auligné (JCSDA) and Dr. Gelaro (GMAO) 
 

• Proactive QC 
– Identify detrimental observations using (E)FSO with short lead-time. 
– Repeat analysis without using them. 
– Proved successful using NCEP’s EnKF-GSI hybrid 3D-Var on GFS. 
– c.f. Hotta (2014; UMD PhD dissertation), Hotta et al. (2016; in preparation for MWR) 

 

• Tuning of R matrix using EFSR 
– EFSO can be extended to formulate forecast sensitivity to the R matrix. 
– This diagnostics gives guidance on how to optimize R via tuning. 
– Proved successful using NCEP’s EnKF-GSI hybrid 3D-Var on GFS. 
– c.f. Hotta (2014; UMD PhD dissertation), Hotta et al. (2016; in preparation for MWR) 

 

• Efficient design of observation pre-processing 
– Use (E)FSO instead of expensive OSE to deduce optimal QC criteria 
– Use (E)FSR to assign optimal R matrix 
– Proved effective with TMPA precipitation assimilation with LETKF (Lien et al. 2015ab, MWR) 
Æ Lien et al. (2016; in preparation for MWR) 
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Part 2:  
Degrees of Freedom for Signal 

(DFS) diagnostics at JMA 



1. Motivation 

• How can we quantify the “value” of each observation? 

• One possible quantification:  
– an observation is valuable if it improves the forecast. 

• Æ FSO/EFSO 

 

• Another approach (inspired from information theory): 
– An observation is valuable if it enhances our “knowledge” 

about the true state of the atmosphere. 

– Our “knowledge” is enhanced if the uncertainty of the 
state estimate is reduced by assimilating the observation. 

– Æ Degrees of Freedom for Signal (DFS, or information 
content). 
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2. What is DFS? 

• Defined as the trace tr 𝐒  of  the “influence matrix” 𝐒 = 𝐇𝐊 𝐓 = 𝛛𝐲𝐚

𝛛𝐲𝐨
 

 
• Shown to behave similarly to Shannon entropy reduction under some 

conditions (Fisher 2003, ECMWF tech memo #397):  

  tr 𝐒 ≈  𝐻 𝐱|𝐱𝐛 − 𝐻 𝐱 𝐱𝐛, 𝐲𝐨  × const. 

 
• Two ways to interpret: 

1. Analysis sensitivity to observations measured in obs space.  
2. The amount of information that the analysis extracted from observations. 

 
Simple illustrative examples: 
- Forecast-Forecast cycle: analysis is always the same as the background. 

- 𝐲𝐚 ≡ 𝐲𝐛 Æ 𝐒 is null, DFS=tr(S) = 0 (0% information from obs.) 
-  Direct Insertion: background is completely replaced by the obs. 

- 𝐲𝐚 ≡ 𝐲𝐨 Æ 𝐒 is identity, DFS = tr(S) = #obs 
- DFS per obs  = 1 (100% information comes from obs. ) 
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2. What is DFS? 

• First introduced to NWP by Fisher (2003) and Cardinali et al. (2004) 

• Popular diagnostics for variational DA systems. 

– Routinely monitored by several NWP centers (e.g. ECMWF, Météo-
France) 

• Liu et al. (2009) derived a simple method to compute DFS for EnKF: 

𝐒 =
𝛛𝐲𝐚

𝛛𝐲𝐨 = 𝐇𝐊 𝐓 = 𝐑−𝟏𝐇𝐀𝐇𝐓 ≈
𝟏

𝐊 − 𝟏𝐑
−𝟏 𝐘𝐚 𝐘𝐚 𝐓 

• Verified in Liu et al. (2009) with a simple AGCM (SPEEDY) in an 
idealized “identical-twin” scenario, but 

• Up to present, not yet applied to operational Ensemble DA with real 
observations. 
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3. Ensemble-based DFS diagnostics at JMA 
3-1. Experimental set-up 

• DA system: hybrid LETKF/4D-Var coupled with JMA GSM 
– Resolution:  (outer) TL959L100 ; (inner and ensemble) T319L100 

– Window: 6 hours (analysis time +/- 3 hours) 

– B weights: 77% from static, 23% from ensemble 

– Member size: 50 

– Localization scales (e-folding):  
• LETKF:   Horizontal: 400km, Vertical: 0.4 scale heights 

• 4D-Var: Horizontal: 800km, Vertical: 0.8 scale heights 

– Covariance Inflation: Adaptive inflation of Miyoshi (2011) 

• DFS estimation Algorithms:  

– Liu et al. (2009)   
𝟏

𝐊−𝟏
tr(𝐑−𝟏 𝐘𝐚 𝐘𝐚 𝐓) 

–  also tried the residual-based method of Lupu et al. (2011)  as a double 
check: 

• tr 𝐇𝐊 = tr 𝐑 −1𝔼 𝐝b
a 𝐝ao T , 𝐑 = 𝔼 𝐝ao 𝐝b

o T  with the expectation 
evaluated as the average over a period and samples, assuming ergodicity 
and homogeneity 
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identical to EFSO 
in Part 1 



3. Ensemble-based DFS diagnostics at JMA 
3-2. Results: DFS per obs 

LETKF within JMA hybrid DA c.f. ECMWF 4D-Var (as of 2011) 
 from Cardinali  (2013; ECMWF lecture notes) 

• Reasonable agreement between the two methods (at least for conventional obs). 

• Shockingly small observational impact: 

– for JMA only about 1% of information comes from observations, 

– whereas it is about 20% in ECMWF 4D-Var 
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Global average:  
1.58% 0.68% Global average: 18% 

Satellite radiances 

Conventional 

Satellite radiances 

Conventional 

CSR 

Satellite non-radiance 



3. Ensemble-based DFS diagnostics at JMA 
3-2. Results: DFS per obs 

LETKF within JMA hybrid DA 

• DFS particularly small for dense observations, satellite radiances in particular 
(except AMSU-A and CSR*). 
* CSR: Clear Sky Radiances measured by infrared imagers on geostationary satellites  (MTSAT, 
GOES and Meteosat) 
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Global average:  
1.58% 0.68% Global average: 18% 

Satellite radiances 

Conventional 

Satellite radiances 

CSR 

Satellite non-radiance 

Conventional 

c.f. ECMWF 4D-Var (as of 2011) 
 from Cardinali  (2013; ECMWF lecture notes) 



4. Ensemble-based DFS for NCEP GFS hybrid GSI 
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conventional 
Satellite 

Radiance 
hyperspectral 
sounders 

EnSRF LETKF • To discern if the “very 
small DFS problem” is 
merely an idiosyncrasy of 
JMA, we computed DFS 
for NCEP’s lower-
resolution version of 
GFS/GSI hybrid DA as 
well. 

• Results: DFS is very small 
for NCEP’s system as 
well. 

 
[%] 

Æ “Small DFS problem”  possibly universal to 
all EnKF systems. 



5. Why DFS so small for EnKF? 
• Our Answer: not enough ensemble size. 

• We can show, for a local analysis in LETKF, that: 
  tr 𝐒loc = tr 𝐊loc

𝐓 𝐇loc
𝐓 = tr 𝐇loc𝐊loc ≤ 𝐾 − 1   

• i.e., DFS is bounded from above by the degrees of freedom of the background 
ensemble. See the next slide for proof. 

• The number of observations locally assimilated, 𝑝loc, is ∼ 𝑂 103 , much larger 
than the member size 𝐾 = 50. 

• Suppose, for convenience, that each observation locally assimilated has 
comparable DFS, and that the observation density can be assumed homogeneous. 

• Then, we can assume that, locally, (DFS per obs) ∼ 𝐾−1
𝑝loc

 , which gives:  

DFSglobal =  (DFS per obs )localall obs  ∼ 𝑝global ×
𝐾−1
𝑝loc

  

 →  (DFS per obs )global=
DFSglobal 
𝑝global

∼  𝐾−1
𝑝loc

 , which, for our system, is  
49

4,000
∼ O(1%) 
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6. Implications 

• We have seen that, for an EnKF with ensemble size 𝐾 much smaller 
than the number of the locally assimilated observations 𝑝loc 
(𝑝loc ≫ 𝐾), DFS is inevitably bounded by the member size 𝐾 and 
hence automatically underestimated. 

• This means that such a system cannot fully extract information from 
observations. 

• We believe this fact has a lot of important implications, e.g., on: 

1. why drastic observation thinning does not harm performance, 

2. why covariance inflation is necessary, 

3. what the localization scale should be, given the ensemble size 
and observation density, 

4. how, in serial assimilation, the order of assimilating 
observations affects the accuracy of the analysis  …etc. 
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6-1. Implication for observation thinning 
(highly speculative) 

• Hamrud et al. (2015 Part I; MWR) reports that, in ECMWF’s LETKF local analysis, 
limiting the number of assimilated observations to only 30 per report type and 
element does not harm (even improves) forecast performance while achieving 
dramatic computational saving at the same time. 

– Similar result was also obtained with JMA’s LETKF (Ota 2015, “adjoint Workshop”). 

• This fact “using less obs is better” seems counterintuitive and difficult to interpret 
(at least to me). 

• DFS discussion could provide a plausible interpretation (justification): 

– In LETKF local analysis, the amount of information extractable from observations (=DFS) 
is limited by the ensemble member size. 

– Thus, assimilating too many observations beyond this limit only adds noises rather than 
signal. 

– Æ Assimilating observations within the limit of DFS imposed by the member size 
reduces noises and improves analysis. 

• Related to the argument above, in a situation where thinning of observations is 
necessary (e.g., very dense observation such as satellite hyperspectral sounding, 
radar data, etc.), it would make sense to assimilate only the observations with 
large DFS. 
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6-2. Implication on covariance inflation 
(highly speculative) 

• If the ensemble size is insufficient, DFS=tr(𝐑−𝟏𝐇𝐀𝐇𝐓) is underestimated. 

• Æ The analysis error covariance 𝐀 is also underestimated. 

• Æ Need to inflate 𝐀. 
 

• Traditionally, nonlinearity and model errors are considered to be the 
source of necessity for covariance inflation 

– It is B rather than A that need inflation. 

– This is true for Extended Kalman Filter. 

• The inherent underestimation of DFS could be another mechanism behind 
the need for covariance inflation. 

• This argument gives intuitive explanation as to why Relaxation-to-prior 
methods of Zhang et al. (2004) and Whitaker and Hamil (2012) are so 
successful: 

–  underestimation of DFS (= posterior spread in obs space) is severer 
when/where observations are denser 

– Relaxation-to-prior methods act to inflate A more exactly in such a situation. 
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6-3. Implication on covariance localization 
(highly speculative) 

• Traditionally, it is believed that localization is necessary to filter out spurious 
correlations in B due to sampling errors. 

• From this perspective, observation density/distribution does not come into play. 
 

• The fact that DFS is bounded by the member size provides another criterion for 
optimality of localization: 

– Let {𝜎𝑖} be the singular values of 𝐑−1
2𝐇𝐁

1
2 = 𝟏

K−1
𝐑−𝟏𝟐𝐘𝐛 . Then, DFS =  𝜎𝑖

2

1+𝜎𝑖
2𝑖   

– Æ DFS will not be underestimated if 𝐾-th largest singular value 𝜎𝐾  is negligibly small. 

• This gives a criterion for the optimal member size 𝐾 given the observation network 
(𝐇, 𝐑) and background error covariance (𝐁). 

• Inversely, given the member size 𝐾, we can choose localization scale so that DFS is 
not artificially bounded. For this, we can require that the observations within the 
localized area are few enough such that 𝜎𝑖 ≪ 1 for some 𝑖 < 𝐾. 
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6-4. Implication on order of obs. assimilation 
in serial EnKF 

(highly speculative) 
• Given that the total DFS is bounded by the ensemble size, it would make 

sense to assimilate the observation with the largest DFS first. 

• In fact, Dr. Jeff Whitaker showed at ISDA 2015 that, in serial EnSRF,  the 
following procedure improves the analysis: 

– assimilating observations from those with the smallest 𝜌 ≔ HAH𝑇

HBH𝑇 to those 

with the largest, 

– assigning large localization scale to observations whos 𝜌 is small. 

• It is easy to see 𝜌 = 
HAH𝑇

HBH𝑇 =
H I−KH BH𝑇

HBH𝑇 = 1 − HK =1-DFS, i.e., Dr. 

Whitaker’s successful method is equivalent to: 
– assimilating observations from largest DFS to those with smallest, 

– assigning a larger localization scale to observations with larger DFS 

• Æ DFS argument could provide a theoretical justification to his somewhat 
empirical but successful method. 

30 



7. Summary of DFS diagnostics 
• Ensemble based DFS estimation of Liu et al. (2009) is implemented for the 

first time (perhaps) to a quasi-operational DA system with real data. 

• In order for comparison, DFS was also computed using the residual-based 
method of Lupu et al. (2011). 

• DFS computed with the both methods turned out to be very small 
compared to that of variational method.  

• Simple mathematical manipulation shows that DFS is automatically 
underestimated (bounded from above by the member size) if the number 
of locally-assimilated observations is much larger than the member size 
(𝑝loc ≫ 𝐾). 

• Underestimation of DFS is, by definition, directly related to 
underestimation of  analysis spread. 

• Æ This Entails implications to many important issues of EnKF including 
covariance inflation/localization and observation thinning.  
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Backup slides 



Hybrid 4DVar-LETKF DA developed in JMA 
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Analysis resolution 

 (outer / inner) 
TL959L100 (~20km, top:0.01hPa) / 
TL319L100 (~55km, top:0.01hPa) 

Assimilation 
window 

6 hours (analysis time +/- 3 
hours) 

Hybrid method 
Extended control variable 

method (Lorenc 2003) 

Weights on B βstat2 = 0.77, βens2 = 0.23  
LETKF resolution TL319L100 

Ensemble size 50 

Localization scale 
(4DVar) 

Horizontal: 800km 
Vertical: 0.8 scale heights 

Localization scale 
(LETKF) 

Horizontal: 400km, Vertical: 0.4 
(0.8 for Ps) scale heights 

Covariance 
inflation 

Adaptive inflation (Miyoshi 2011) 

Deterministic 
forecast 

Ensemble forecast 

Deterministic part Ensemble part 

QC 

4DVar 

Ensemble mean 

QC 

EnKF (LETKF) 

Observations 

Perturbations 

Next analysis 

Ensemble analysis 

Deterministic 
analysis 

Recentering 

Next analysis 

Operational global DA at JMA is 4DVar (not hybrid) 

ensensstatstat BBB 22 EE � 
Static (Climatological) 
background error covariance 

Ensemble-based 
background error 
covariance 

from Yoichiro Ota (2015, Adjoint Workshop) 



FT=0 FT=6 

FT=12 FT=24 

 Percentage of positively-contributing observations 
(target=globe; norm=moist total energy) 



• At FT=24, only slightly more than 50% of the 
observations contribute to improve forecast (as 
pointed out by many FSO studies in the literature). 

• Percentage of “helpful” observations increases for 
shorter evaluation lead-time. 

• Æ Consistent with Hotta (2014, PhD. Dissertation). 
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Decomposition of fcst error 
 into column- and null- spaces of fcst ptbs 

• Fix a grid and consider a local patch that would be used if an observation was located at the grid point in 
question. In the derivation below, all vectors/matrices are assumed to be restricted to this local patch. 

• In EnKF, the sum of each column of 𝐗𝑓 is zero, so rank(𝐗𝑓)=𝐾 − 1: 
span 𝐗 𝑓 = span 𝐗 𝑓 1,⋯ , 𝐗 𝑓 𝐾−1, 𝐗 

𝑓
𝐾 = span 𝐗 𝑓 1,⋯ , 𝐗 𝑓 𝐾−1  

In light of this, we now denote by 𝐗 𝑓 the first 𝐾 − 1 columns of the original 𝐗 𝑓. 

• Now, suppose that 𝐞  ≔ 𝐂
1
2(𝐞𝑡|0

𝑓 +𝐞𝑡|−6
𝑓 ) can be decomposed as  

• 𝐞  = 𝐞  span + 𝐞  null, 𝐞  span =  𝛼𝑘 𝐗 𝑓 𝒌 =
𝑲−𝟏
𝒌=𝟏 𝐗 𝑓𝛂, 

   𝛂 = 𝛼1, ⋯ 𝛼𝐾−1 𝑇  

 Multiplying 𝐞  = 𝐞  span + 𝐞  null  with 𝐂1/2𝐗𝑓 𝑇 =: 𝐗 𝑓𝑇from left,  𝐞  null vanishes by definition , giving: 

𝐗 𝑓𝑇𝐞  = 𝐗 𝑓𝑇 𝐗 𝑓𝛂 + 𝐞  null = 𝐗 𝑓𝑇𝐗 𝑓𝛂 

∴ 𝛂 = 𝐗 𝑓𝑇𝐗 𝑓
−1

𝐗 𝑓𝑇𝐞   

• Once 𝛂 is determined, we can obtain 𝐞  span
2

 and 𝐞  null
2 by 

  𝐞  span
2 = 𝐗 𝑓𝛂 2 = 𝐗 𝑓𝛂 𝑇 𝐗 𝑓𝛂 = 𝛂𝑇𝐗 𝑓𝑇𝐗 𝑓𝛂 = 𝛂𝑇𝐗 𝑓𝑇𝐞   

𝐞  null
2 = 𝐞  2 − 𝐞  span

2
 

 



Proof of tr 𝐒loc ≡ tr(𝐇loc𝐊loc) ≤ 𝐾 − 1 for LETKF local analysis 

• In each local analysis of LETKF, DFS can be expressed as  

• tr 𝐒 ≡ tr 𝐇𝐊 = tr 𝐇𝐀𝐇𝑇𝐑−1   ∵ 𝐊 = 𝐀𝐇𝑇𝐑−1  

• LETKF estimates the analysis error covariance by： 

 𝐀 = 𝐗𝐛𝐀 𝐗𝐛𝑇,     𝐀 = 𝐾 − 1 𝐈 + 𝐘𝐛𝑇𝐑−𝟏𝐘𝐛
−1

= 𝟏
𝐾−1

𝐈 + 𝐙𝑇𝐙 −1,  with 𝐙 ≡ 𝟏
𝐾−1

𝐑−1
2𝐘𝐛 

• 𝐙𝑇𝐙 is a 𝐾 × 𝐾 positive semi-definite symmetric matrix. Its eigenvalue decomposition becomes： 

𝐙𝑇𝐙 = 𝐔𝚲𝐔−1, 𝐔𝐔−1 = 𝐈,  𝚲 = diag(λ1, λ2,⋯ , λ𝐾)  
• Since rank 𝐙 = 𝐾 − 1 , λ𝐾 = 0. From positive semi-definiteness of 𝐙𝑇𝐙,  λ𝑖> 0 (1 ≤ 𝑖 ≤ 𝐾 − 1). 
• Thus: 

𝐇𝐊 = 𝐇𝐀𝐇𝑇𝐑−1 = 𝐇𝐗𝐛𝐀 𝐗𝐛𝑇𝐇𝑇𝐑−1 = 𝐘𝐛𝐀 𝐘𝐛𝑇𝐑−1 

= 𝐾 − 1𝐑
1
2𝐙 𝐀 𝐾 − 1𝐑

1
2𝐙

𝑇
𝐑−1 = 𝐑

1
2𝐙 𝐈 + 𝐙𝑇𝐙 −1 𝐑

1
2𝐙

𝑇
𝐑−1 

• Because trace is invariant under cyclic reordering,  

tr 𝐒 ≡ tr 𝐇𝐊 = tr 𝐑
1
2𝐙 𝐈 + 𝐙𝑇𝐙 −𝟏 𝐑

1
2𝐙

𝑇
𝐑−1 = tr 𝐙 𝐈 + 𝐙𝑇𝐙 −𝟏𝐙𝑇𝐑

1
2𝐑−1𝐑

1
2  =

tr 𝐙 𝐈 + 𝐙𝑇𝐙 −1𝐙𝑇 = tr 𝐈 + 𝐙𝑇𝐙 −1𝐙𝐓𝐙 = tr 𝐈 + 𝐔𝚲𝐔−𝟏 −1𝐔𝚲𝐔−1 =

 𝜆𝑖
1+𝜆𝑖

= 𝜆1
1+𝜆1

+ ⋯+ 𝜆𝐾−1
1+𝜆𝐾−1

+ 0
1+0

≤ 𝐾 − 1𝐾
𝑖=1  




